Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
1.
bioRxiv ; 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38559000

ABSTRACT

The evolution of SARS-CoV-2 variants and their respective phenotypes represents an important set of tools to understand basic coronavirus biology as well as the public health implications of individual mutations in variants of concern. While mutations outside of Spike are not well studied, the entire viral genome is undergoing evolutionary selection, particularly the central disordered linker region of the nucleocapsid (N) protein. Here, we identify a mutation (G215C), characteristic of the Delta variant, that introduces a novel cysteine into this linker domain, which results in the formation of a disulfide bond and a stable N-N dimer. Using reverse genetics, we determined that this cysteine residue is necessary and sufficient for stable dimer formation in a WA1 SARS-CoV-2 background, where it results in significantly increased viral growth both in vitro and in vivo. Finally, we demonstrate that the N:G215C virus packages more nucleocapsid per virion and that individual virions are larger, with elongated morphologies.

2.
J Infect Dis ; 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38657001

ABSTRACT

BACKGROUND: Although antivirals remain important for the treatment COVID-19, methods to assess treatment efficacy are lacking. Here, we investigated the impact of remdesivir on viral dynamics and their contribution to understanding antiviral efficacy in the multicenter ACTT-1 clinical trial that randomized patients to remdesivir or placebo. METHODS: Longitudinal specimens collected during hospitalization from a substudy of 642 COVID-19 patients were measured for viral RNA (upper respiratory tract and plasma), viral nucleocapsid antigen (serum), and host immunologic markers. Associations with clinical outcomes and response to therapy were assessed. RESULTS: Higher baseline plasma viral loads were associated with poorer clinical outcomes, and decreases in viral RNA and antigen in blood but not the upper respiratory tract correlated with enhanced benefit from remdesivir. The treatment effect of remdesivir was most pronounced in patients with elevated baseline nucleocapsid antigen levels: the recovery rate ratio was 1.95 (95%CI 1.40-2.71) for levels >245 pg/ml vs 1.04 (95%CI 0.76-1.42) for levels < 245 pg/ml. Remdesivir also accelerated the rate of viral RNA and antigen clearance in blood, and patients whose blood levels decreased were more likely to recover and survive. CONCLUSIONS: Reductions in SARS-CoV-2 RNA and antigen levels in blood correlated with clinical benefit from antiviral therapy.

3.
Sex Transm Dis ; 51(5): 342-347, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38301634

ABSTRACT

BACKGROUND: How often mpox causes asymptomatic infections, particularly among persons who have received the Modified Vaccinia Ankara (MVA) vaccine, is unknown. METHODS: We performed mpox polymerase chain reaction testing on rectal and pharyngeal specimens collected from symptomatic and asymptomatic patients at a sexual health clinic in Seattle, WA, between May 2022 and May 2023. Analyses evaluated the prevalence of asymptomatic or subclinical infection and, among persons with polymerase chain reaction-positive tests, the association of MVA vaccination status with the symptomatic infection. RESULTS: The study population included 1663 persons tested for mpox during 2353 clinic visits. Ninety-three percent of study participants were cisgender men and 96% were men who have sex with men. A total of 198 symptomatic patients (30%) had a first mpox-positive test during 664 visits. Eighteen patients (1.1%) tested during 1689 visits had asymptomatic or subclinical mpox based on a positive rectal or pharyngeal test done in the absence of testing done because of clinical suspicion for mpox. Fourteen (78%) of 18 persons with asymptomatic/subclinical mpox and 53 (26%) of 198 persons with symptomatic mpox had received at least 1 dose of the MVA vaccine ( P < 0.0001). Controlling for calendar month, study subjects who received 1 and 2 doses of MVA vaccine were 4.4 (95% confidence interval, 1.3-15) and 11.9 (3.6-40) times more likely to have asymptomatic versus symptomatic mpox, respectively, than persons who were unvaccinated. CONCLUSIONS: Asymptomatic mpox is uncommon. Modified Vaccinia Ankara vaccination is associated with an asymptomatic/subclinical infection among persons with mpox.


Subject(s)
Monkeypox , Sexual and Gender Minorities , Vaccines , Vaccinia , Male , Humans , Female , Asymptomatic Infections/epidemiology , Homosexuality, Male , Vaccinia virus/genetics
5.
Sci Rep ; 13(1): 14683, 2023 09 06.
Article in English | MEDLINE | ID: mdl-37674004

ABSTRACT

Previous studies have documented natural infections of SARS-CoV-2 in various domestic and wild animals. More recently, studies have been published noting the susceptibility of members of the Cervidae family, and infections in both wild and captive cervid populations. In this study, we investigated the presence of SARS-CoV-2 in mammalian wildlife within the state of Vermont. 739 nasal or throat samples were collected from wildlife throughout the state during the 2021 and 2022 harvest season. Data was collected from red and gray foxes (Vulpes vulples and Urocyon cineroargentus, respectively), fishers (Martes pennati), river otters (Lutra canadensis), coyotes (Canis lantrans), bobcats (Lynx rufus rufus), black bears (Ursus americanus), and white-tailed deer (Odocoileus virginianus). Samples were tested for the presence of SARS-CoV-2 via quantitative RT-qPCR using the CDC N1/N2 primer set and/or the WHO-E gene primer set. Surprisingly, we initially detected a number of N1 and/or N2 positive samples with high cycle threshold values, though after conducting environmental swabbing of the laboratory and verifying with a second independent primer set (WHO-E) and PCR without reverse transcriptase, we showed that these were false positives due to plasmid contamination from a construct expressing the N gene in the general laboratory environment. Our final results indicate that no sampled wildlife were positive for SARS-CoV-2 RNA, and highlight the importance of physically separate locations for the processing of samples for surveillance and experiments that require the use of plasmid DNA containing the target RNA sequence. These negative findings are surprising, given that most published North America studies have found SARS-CoV-2 within their deer populations. The absence of SARS-CoV-2 RNA in populations sampled here may provide insights in to the various environmental and anthropogenic factors that reduce spillover and spread in North American's wildlife populations.


Subject(s)
COVID-19 , Coyotes , Deer , Lynx , Otters , Animals , Animals, Wild , COVID-19/epidemiology , RNA, Viral/genetics , SARS-CoV-2/genetics , Vermont/epidemiology , Foxes
6.
bioRxiv ; 2023 Apr 26.
Article in English | MEDLINE | ID: mdl-37162835

ABSTRACT

Previous studies have documented natural infections of SARS-CoV-2 in various domestic and wild animals. More recently, studies have been published noting the susceptibility of members of the Cervidae family, and infections in both wild and captive cervid populations. In this study, we investigated the presence of SARS-CoV-2 in mammalian wildlife within the state of Vermont. 739 nasal or throat samples were collected from wildlife throughout the state during the 2021 and 2022 harvest season. Data was collected from red and gray foxes ( Vulpes vulples and Urocyon cineroargentus , respectively), fishers ( Martes pennati ), river otters ( Lutra canadensis ), coyotes ( Canis lantrans ), bobcats ( Lynx rufus rufus ), black bears ( Ursus americanus ), and white-tailed deer ( Odocoileus virginianus ). Samples were tested for the presence of SARS-CoV-2 via quantitative RT-qPCR using the CDC N1/N2 primer set and/or the WHO-E gene primer set. Our results indicate that no sampled wildlife were positive for SARS-CoV-2. This finding is surprising, given that most published North America studies have found SARS-CoV-2 within their deer populations. The absence of SARS-CoV-2 RNA in populations sampled here may provide insights in to the various environmental and anthropogenic factors that reduce spillover and spread in North American's wildlife populations.

7.
J Clin Virol ; 159: 105373, 2023 02.
Article in English | MEDLINE | ID: mdl-36603329

ABSTRACT

BACKGROUND: In spring of 2022, an outbreak of monkeypox (mpox) spread worldwide. Here, we describe performance characteristics of monkeypox virus (MPXV)-specific and pan-orthopoxvirus qPCR assays for clinical use. METHODS: We validated probe-based qPCR assays targeting MPXV-specific loci F3L and G2R (genes MPXVgp052/OPG065 and MPXVgp002 and gp190/OPG002, respectively) and a pan-orthopoxvirus assay targeting the E9L locus (MPXVgp057/OPG071). Clinical samples and synthetic controls were extracted using the Roche MP96 or Promega Maxwell 48 instrument. qPCR was performed on the AB7500 thermocycler. Synthetic control DNA and high concentration clinical samples were quantified by droplet PCR. Cross-reactivity was evaluated for camelpox and cowpox genomic DNA, vaccinia culture supernatant, and HSV- and VZV-positive clinical specimens. We also tested the performance of the F3L assay using dry swabs, Aptima vaginal and rectal swabs, nasopharyngeal, rectal, and oral swabs, cerebrospinal fluid, plasma, serum, whole blood, breastmilk, urine, saliva, and semen. RESULTS: The MPXV-F3L assay is reproducible at a limit of detection (LoD) of 65.6 copies/mL of viral DNA in viral transport medium/universal transport medium (VTM/UTM), or 3.3 copies/PCR reaction. No cross-reactivity with herpesviruses or other poxviruses was observed. MPXV-F3L detects MPXV DNA in alternative specimen types, with an LoD ranging between 260-1000 copies/mL, or 5.7-10 copies/PCR reaction. In clinical swab VTM specimens, MPXV-F3L and MPXV-G2R assays outperformed OPXV-E9L by an average of 2.4 and 2.8 Cts, respectively. MPXV-G2R outperformed MPXV-F3L by 0.4 Cts, consistent with presence of two copies of G2R present in labile inverted terminal repeats (ITRs) of MPXV genome. CONCLUSIONS: MPXV is readily detected by qPCR using three clinically validated assays.


Subject(s)
Monkeypox virus , Female , Humans , Monkeypox virus/genetics , /epidemiology , Real-Time Polymerase Chain Reaction , Nucleic Acid Amplification Techniques , DNA, Viral/genetics , DNA, Viral/analysis
8.
Ear Nose Throat J ; 102(5): NP245-NP248, 2023 May.
Article in English | MEDLINE | ID: mdl-33784855

ABSTRACT

Our case demonstrates the rare presentation of sinonasal sarcoidosis causing severe nasal obstruction. While the patient had a remote history of pulmonary sarcoidosis, she was in remission and had no prior history of sinonasal involvement. Sarcoidosis should be considered in a patient with nasal obstruction especially when there is a history of systemic sarcoid disease.


Subject(s)
Nasal Obstruction , Sarcoidosis , Female , Humans
10.
Viruses ; 14(11)2022 10 29.
Article in English | MEDLINE | ID: mdl-36366490

ABSTRACT

Monkeypox virus, the causative agent of the 2022 monkeypox outbreak, is a double-stranded DNA virus in the Orthopoxvirus genus of the Poxviridae family. Genes in terminal regions of Orthopoxvirus genomes mostly code for host-pathogen interaction proteins and are prone to selective pressure and modification events. Using viral whole genome sequencing, we identified twenty-five total clinical samples with ORF-disrupting mutations, including twenty samples encoding nonsense mutations in MPXVgp001/191 (OPG001), MPXVgp004/188 (OPG015), MPXVgp010 (OPG023), MPXVgp030 (OPG042), MPXVgp159 (OPG0178), or MPXVgp161 (OPG181). Additional mutations include a frameshift leading to an alternative C-terminus in MPXVgp010 (OPG023) and an insertion in an adenine homopolymer at the beginning of the annotated ORF for MPXVgp153 (OPG151), encoding a subunit of the RNA polymerase, suggesting the virus may instead use the start codon that encodes Met9 as annotated. Finally, we detected three samples with large (>900 bp) deletions. These included a 913 bp deletion that truncates the C-terminus of MPXVgp010 (OPG023); a 4205 bp deletion that eliminates MPXVgp012 (OPG025), MPXVgp013 (OPG027), and MPXVgp014 (OPG029) and truncates MPXVgp011 (OPG024; D8L) and MPXVgp015 (OPG030); and a 6881 bp deletion that truncates MPXVgp182 (OPG210) and eliminates putative ORFs MPXVgp184, MPXVgp185 (OPG005), and MPXVgp186, as well as MPXVgp187 (OPG016), and MPXVgp188 (OPG015) from the 3' ITR only. MPXVgp182 encodes the monkeypox-specific, highly immunogenic surface glycoprotein B21R which has been proposed as a serological target. Overall, we find greater than one-tenth of our sequenced MPXV isolates have at least one gene inactivating mutation and these genes together comprised greater than one-tenth of annotated MPXV genes. Our findings highlight non-essential genes in monkeypox virus that may be evolving as a result of selective pressure in humans, as well as the limitations of targeting them for therapeutics and diagnostic testing.


Subject(s)
Monkeypox virus , Humans , Monkeypox virus/genetics , Mutation , Ohio , Washington , Open Reading Frames
12.
Emerg Infect Dis ; 28(11): 2343-2347, 2022 11.
Article in English | MEDLINE | ID: mdl-36150508

ABSTRACT

To determine the epidemiology of human parainfluenza virus in homeless shelters during the COVID-19 pandemic, we analyzed data and sequences from respiratory specimens collected in 23 shelters in Washington, USA, during 2019-2021. Two clusters in children were genetically similar by shelter of origin. Shelter-specific interventions are needed to reduce these infections.


Subject(s)
COVID-19 , Ill-Housed Persons , Paramyxoviridae Infections , Child , Humans , COVID-19/epidemiology , Pandemics , Washington/epidemiology , Paramyxoviridae Infections/epidemiology
13.
Lancet Reg Health Am ; 15: 100348, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35996440

ABSTRACT

Background: The circulation of respiratory viruses poses a significant health risk among those residing in congregate settings. Data are limited on seasonal human coronavirus (HCoV) infections in homeless shelter settings. Methods: We analysed data from a clinical trial and SARS-CoV-2 surveillance study at 23 homeless shelter sites in King County, Washington between October 2019-May 2021. Eligible participants were shelter residents aged ≥3 months with acute respiratory illness. We collected enrolment data and nasal samples for respiratory virus testing using multiplex RT-PCR platform including HCoV. Beginning April 1, 2020, eligibility expanded to shelter residents and staff regardless of symptoms. HCoV species was determined by RT-PCR with species-specific primers, OpenArray assay or genomic sequencing for samples with an OpenArray relative cycle threshold <22. Findings: Of the 14,464 samples from 3281 participants between October 2019-May 2021, 107 were positive for HCoV from 90 participants (median age 40 years, range: 0·9-81 years, 38% female). HCoV-HKU1 was the most common species identified before and after community-wide mitigation. No HCoV-positive samples were identified between May 2020-December 2020. Adults aged ≥50 years had the highest detection of HCoV (11%) among virus-positive samples among all age-groups. Species and sequence data showed diversity between and within HCoV species over the study period. Interpretation: HCoV infections occurred in all congregate homeless shelter site age-groups with the greatest proportion among those aged ≥50 years. Species and sequencing data highlight the complexity of HCoV epidemiology within and between shelters sites. Funding: Gates Ventures, Centers for Disease Control and Prevention, National Institute of Health.

14.
J Mol Diagn ; 24(9): 963-976, 2022 09.
Article in English | MEDLINE | ID: mdl-35863699

ABSTRACT

Amplicon-based sequencing methods are central in characterizing the diversity, transmission, and evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), but need to be rigorously assessed for clinical utility. Herein, we validated the Swift Biosciences' SARS-CoV-2 Swift Normalase Amplicon Panels using remnant clinical specimens. High-quality genomes meeting our established library and sequence quality criteria were recovered from positive specimens, with 95% limit of detection of 40.08 SARS-CoV-2 copies/PCR. Breadth of genome recovery was evaluated across a range of CT values (11.3 to 36.7; median, 21.6). Of 428 positive samples, 413 (96.5%) generated genomes with <10% unknown bases, with a mean genome coverage of 13,545× ± SD 8382×. No genomes were recovered from PCR-negative specimens (n = 30) or from specimens positive for non-SARS-CoV-2 respiratory viruses (n = 20). Compared with whole-genome shotgun metagenomic sequencing (n = 14) or Sanger sequencing for the spike gene (n = 11), pairwise identity between consensus sequences was 100% in all cases, with highly concordant allele frequencies (R2 = 0.99) between Swift and shotgun libraries. When samples from different clades were mixed at varying ratios, expected variants were detected even in 1:99 mixtures. When deployed as a clinical test, 268 tests were performed in the first 23 weeks, with a median turnaround time of 11 days, ordered primarily for outbreak investigations and infection control.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/genetics , Genome, Viral , Humans , RNA, Viral/genetics , SARS-CoV-2/genetics , Whole Genome Sequencing/methods
15.
J Clin Virol ; 154: 105218, 2022 09.
Article in English | MEDLINE | ID: mdl-35779343

ABSTRACT

BACKGROUND: Some mutations in the receptor binding domain of the SARS-CoV-2 Spike protein are associated with increased transmission or substantial reductions in vaccine efficacy, including in recently described Omicron subvariants. The changing frequencies of these mutations combined with their differing susceptibility to available therapies have posed significant problems for clinicians and public health professionals. OBJECTIVE: To develop an assay capable of rapidly and accurately identifying variants including Omicron in clinical specimens to enable case tracking and/or selection of appropriate clinical treatment. STUDY DESIGN: Using three duplex RT-ddPCR reactions targeting four amino acids, we tested 419 positive clinical specimens from February to December 2021 during a period of rapidly shifting variant prevalences and compared genotyping results to genome sequences for each sample, determining the sensitivity and specificity of the assay for each variant. RESULTS: Mutation determinations for 99.7% of detected samples agree with NGS data for those samples, and are accurate despite wide variation in RNA concentration and potential confounding factors like transport medium, presence of additional respiratory viruses, and additional mutations in primer and probe sequences. The assay accurately identified the first 15 Omicron variants in our laboratory including the first Omicron in Washington State and discriminated against S-gene dropout Delta specimen. CONCLUSION: We describe an accurate, precise, and specific RT-ddPCR assay for variant detection that remains robust despite being designed prior the emergence of Delta and Omicron variants. The assay can quickly identify mutations in current and past SARS-CoV-2 variants, and can be adapted to future mutations.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , COVID-19 Testing , Humans , Polymerase Chain Reaction , RNA, Viral/analysis , RNA, Viral/genetics , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus
19.
J Infect Dis ; 226(5): 788-796, 2022 09 13.
Article in English | MEDLINE | ID: mdl-35150571

ABSTRACT

While detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) by diagnostic reverse-transcription polymerase chain reaction (RT-PCR) is highly sensitive for viral RNA, the nucleic acid amplification of subgenomic RNAs (sgRNAs) that are the product of viral replication may more accurately identify replication. We characterized the diagnostic RNA and sgRNA detection by RT-PCR from nasal swab samples collected daily by participants in postexposure prophylaxis or treatment studies for SARS-CoV-2. Among 1932 RT-PCR-positive swab samples with sgRNA tests, 40% (767) had detectable sgRNA. Above a diagnostic RNA viral load (VL) threshold of 5.1 log10 copies/mL, 96% of samples had detectable sgRNA with VLs that followed a linear trend. The trajectories of diagnostic RNA and sgRNA VLs differed, with 80% peaking on the same day but duration of sgRNA detection being shorter (8 vs 14 days). With a large sample of daily swab samples we provide comparative sgRNA kinetics and a diagnostic RNA threshold that correlates with replicating virus independent of symptoms or duration of illness.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , COVID-19 Testing , Humans , Kinetics , RNA, Viral/analysis , RNA, Viral/genetics , SARS-CoV-2/genetics , Viral Load
20.
PLoS One ; 17(1): e0261853, 2022.
Article in English | MEDLINE | ID: mdl-35025926

ABSTRACT

Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) is used worldwide to test and trace the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). "Extraction-less" or "direct" real time-reverse transcription polymerase chain reaction (RT-PCR) is a transparent and accessible qualitative method for SARS-CoV-2 detection from nasopharyngeal or oral pharyngeal samples with the potential to generate actionable data more quickly, at a lower cost, and with fewer experimental resources than full RT-qPCR. This study engaged 10 global testing sites, including laboratories currently experiencing testing limitations due to reagent or equipment shortages, in an international interlaboratory ring trial. Participating laboratories were provided a common protocol, common reagents, aliquots of identical pooled clinical samples, and purified nucleic acids and used their existing in-house equipment. We observed 100% concordance across laboratories in the correct identification of all positive and negative samples, with highly similar cycle threshold values. The test also performed well when applied to locally collected patient nasopharyngeal samples, provided the viral transport media did not contain charcoal or guanidine, both of which appeared to potently inhibit the RT-PCR reaction. Our results suggest that direct RT-PCR assay methods can be clearly translated across sites utilizing readily available equipment and expertise and are thus a feasible option for more efficient COVID-19 coronavirus disease testing as demanded by the continuing pandemic.


Subject(s)
COVID-19 Testing/methods , COVID-19/diagnosis , RNA, Viral/genetics , Real-Time Polymerase Chain Reaction/methods , Reverse Transcription/genetics , SARS-CoV-2/genetics , COVID-19/virology , Feasibility Studies , Humans , Nasopharynx/virology , Pandemics/prevention & control , Sensitivity and Specificity , Serologic Tests/methods , Specimen Handling/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...